3.2.16 \(\int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx\) [116]

3.2.16.1 Optimal result
3.2.16.2 Mathematica [C] (warning: unable to verify)
3.2.16.3 Rubi [A] (verified)
3.2.16.4 Maple [A] (verified)
3.2.16.5 Fricas [F(-1)]
3.2.16.6 Sympy [F]
3.2.16.7 Maxima [F(-2)]
3.2.16.8 Giac [F]
3.2.16.9 Mupad [F(-1)]

3.2.16.1 Optimal result

Integrand size = 25, antiderivative size = 316 \[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx=\frac {a^2 \arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{5/2}}-\frac {a^2 \arctan \left (1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{5/2}}+\frac {a^2 \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} d e^{5/2}}-\frac {a^2 \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} d e^{5/2}}-\frac {4 a^2}{3 d e (e \tan (c+d x))^{3/2}}-\frac {4 a^2 \sec (c+d x)}{3 d e (e \tan (c+d x))^{3/2}}-\frac {2 a^2 \operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sec (c+d x) \sqrt {\sin (2 c+2 d x)}}{3 d e^2 \sqrt {e \tan (c+d x)}} \]

output
1/2*a^2*arctan(1-2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))/d/e^(5/2)*2^(1/2)-1 
/2*a^2*arctan(1+2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))/d/e^(5/2)*2^(1/2)+1/ 
4*a^2*ln(e^(1/2)-2^(1/2)*(e*tan(d*x+c))^(1/2)+e^(1/2)*tan(d*x+c))/d/e^(5/2 
)*2^(1/2)-1/4*a^2*ln(e^(1/2)+2^(1/2)*(e*tan(d*x+c))^(1/2)+e^(1/2)*tan(d*x+ 
c))/d/e^(5/2)*2^(1/2)+2/3*a^2*(sin(c+1/4*Pi+d*x)^2)^(1/2)/sin(c+1/4*Pi+d*x 
)*EllipticF(cos(c+1/4*Pi+d*x),2^(1/2))*sec(d*x+c)*sin(2*d*x+2*c)^(1/2)/d/e 
^2/(e*tan(d*x+c))^(1/2)-4/3*a^2/d/e/(e*tan(d*x+c))^(3/2)-4/3*a^2*sec(d*x+c 
)/d/e/(e*tan(d*x+c))^(3/2)
 
3.2.16.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 15.82 (sec) , antiderivative size = 224, normalized size of antiderivative = 0.71 \[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx=-\frac {a^2 \cos ^2\left (\frac {1}{2} (c+d x)\right ) \cos (c+d x) \cot \left (\frac {1}{2} (c+d x)\right ) \sec ^4\left (\frac {1}{2} \arctan (\tan (c+d x))\right ) \left (16 \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},\frac {1}{2},\frac {1}{4},-\tan ^2(c+d x)\right )+16 \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},1,\frac {1}{4},-\tan ^2(c+d x)\right )+3 \sqrt {2} \left (2 \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-2 \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )+\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )-\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )\right ) \tan ^{\frac {3}{2}}(c+d x)\right )}{24 d e^2 \sqrt {e \tan (c+d x)}} \]

input
Integrate[(a + a*Sec[c + d*x])^2/(e*Tan[c + d*x])^(5/2),x]
 
output
-1/24*(a^2*Cos[(c + d*x)/2]^2*Cos[c + d*x]*Cot[(c + d*x)/2]*Sec[ArcTan[Tan 
[c + d*x]]/2]^4*(16*Hypergeometric2F1[-3/4, 1/2, 1/4, -Tan[c + d*x]^2] + 1 
6*Hypergeometric2F1[-3/4, 1, 1/4, -Tan[c + d*x]^2] + 3*Sqrt[2]*(2*ArcTan[1 
 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - 2*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]] 
+ Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] - Log[1 + Sqrt[2]*Sqr 
t[Tan[c + d*x]] + Tan[c + d*x]])*Tan[c + d*x]^(3/2)))/(d*e^2*Sqrt[e*Tan[c 
+ d*x]])
 
3.2.16.3 Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 316, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {3042, 4374, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^2}{(e \tan (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}{\left (-e \cot \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 4374

\(\displaystyle \int \left (\frac {a^2}{(e \tan (c+d x))^{5/2}}+\frac {a^2 \sec ^2(c+d x)}{(e \tan (c+d x))^{5/2}}+\frac {2 a^2 \sec (c+d x)}{(e \tan (c+d x))^{5/2}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {a^2 \arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{5/2}}-\frac {a^2 \arctan \left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d e^{5/2}}+\frac {a^2 \log \left (\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d e^{5/2}}-\frac {a^2 \log \left (\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d e^{5/2}}-\frac {2 a^2 \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{3 d e^2 \sqrt {e \tan (c+d x)}}-\frac {4 a^2}{3 d e (e \tan (c+d x))^{3/2}}-\frac {4 a^2 \sec (c+d x)}{3 d e (e \tan (c+d x))^{3/2}}\)

input
Int[(a + a*Sec[c + d*x])^2/(e*Tan[c + d*x])^(5/2),x]
 
output
(a^2*ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d*e^(5/2 
)) - (a^2*ArcTan[1 + (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d*e 
^(5/2)) + (a^2*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] - Sqrt[2]*Sqrt[e*Tan[c + 
 d*x]]])/(2*Sqrt[2]*d*e^(5/2)) - (a^2*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] + 
 Sqrt[2]*Sqrt[e*Tan[c + d*x]]])/(2*Sqrt[2]*d*e^(5/2)) - (4*a^2)/(3*d*e*(e* 
Tan[c + d*x])^(3/2)) - (4*a^2*Sec[c + d*x])/(3*d*e*(e*Tan[c + d*x])^(3/2)) 
 - (2*a^2*EllipticF[c - Pi/4 + d*x, 2]*Sec[c + d*x]*Sqrt[Sin[2*c + 2*d*x]] 
)/(3*d*e^2*Sqrt[e*Tan[c + d*x]])
 

3.2.16.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4374
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + ( 
a_))^(n_), x_Symbol] :> Int[ExpandIntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[ 
c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0]
 
3.2.16.4 Maple [A] (verified)

Time = 5.55 (sec) , antiderivative size = 483, normalized size of antiderivative = 1.53

method result size
parts \(\frac {2 a^{2} e \left (-\frac {1}{3 e^{2} \left (e \tan \left (d x +c \right )\right )^{\frac {3}{2}}}-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \tan \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \tan \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e^{4}}\right )}{d}-\frac {2 a^{2}}{3 d e \left (e \tan \left (d x +c \right )\right )^{\frac {3}{2}}}+\frac {a^{2} \sqrt {2}\, \left (1-\cos \left (d x +c \right )\right )^{2} \left (2 \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right ) \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-\left (1-\cos \left (d x +c \right )\right )^{4} \csc \left (d x +c \right )^{4}+1\right ) \csc \left (d x +c \right )^{2}}{3 d \sqrt {\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {\left (1-\cos \left (d x +c \right )\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \csc \left (d x +c \right )}\, \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{2} \left (-\frac {e \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right )^{\frac {5}{2}}}\) \(483\)
default \(\frac {a^{2} \sqrt {2}\, \left (\cos \left (d x +c \right )+1\right ) \left (3 i \sin \left (d x +c \right ) \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-3 i \sin \left (d x +c \right ) \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-3 \sin \left (d x +c \right ) \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-3 \sin \left (d x +c \right ) \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+2 \sin \left (d x +c \right ) \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}\, \operatorname {EllipticF}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-4 \sqrt {2}\, \cos \left (d x +c \right )\right ) \csc \left (d x +c \right ) \sec \left (d x +c \right )}{6 e^{2} d \sqrt {e \tan \left (d x +c \right )}}\) \(496\)

input
int((a+a*sec(d*x+c))^2/(e*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
2*a^2/d*e*(-1/3/e^2/(e*tan(d*x+c))^(3/2)-1/8/e^4*(e^2)^(1/4)*2^(1/2)*(ln(( 
e*tan(d*x+c)+(e^2)^(1/4)*(e*tan(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*tan( 
d*x+c)-(e^2)^(1/4)*(e*tan(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^( 
1/2)/(e^2)^(1/4)*(e*tan(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e* 
tan(d*x+c))^(1/2)+1)))-2/3*a^2/d/e/(e*tan(d*x+c))^(3/2)+1/3*a^2/d*2^(1/2)* 
(1-cos(d*x+c))^2*(2*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*cot( 
d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticF((csc(d*x+c)-cot(d*x+ 
c)+1)^(1/2),1/2*2^(1/2))*(-cot(d*x+c)+csc(d*x+c))-(1-cos(d*x+c))^4*csc(d*x 
+c)^4+1)/((1-cos(d*x+c))^3*csc(d*x+c)^3+cot(d*x+c)-csc(d*x+c))^(1/2)/((1-c 
os(d*x+c))*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*csc(d*x+c))^(1/2)/((1-cos(d*x 
+c))^2*csc(d*x+c)^2-1)^2/(-e/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*(-cot(d*x+c 
)+csc(d*x+c)))^(5/2)*csc(d*x+c)^2
 
3.2.16.5 Fricas [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate((a+a*sec(d*x+c))^2/(e*tan(d*x+c))^(5/2),x, algorithm="fricas")
 
output
Timed out
 
3.2.16.6 Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx=a^{2} \left (\int \frac {1}{\left (e \tan {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx + \int \frac {2 \sec {\left (c + d x \right )}}{\left (e \tan {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx + \int \frac {\sec ^{2}{\left (c + d x \right )}}{\left (e \tan {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx\right ) \]

input
integrate((a+a*sec(d*x+c))**2/(e*tan(d*x+c))**(5/2),x)
 
output
a**2*(Integral((e*tan(c + d*x))**(-5/2), x) + Integral(2*sec(c + d*x)/(e*t 
an(c + d*x))**(5/2), x) + Integral(sec(c + d*x)**2/(e*tan(c + d*x))**(5/2) 
, x))
 
3.2.16.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+a*sec(d*x+c))^2/(e*tan(d*x+c))^(5/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.2.16.8 Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\left (e \tan \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^2/(e*tan(d*x+c))^(5/2),x, algorithm="giac")
 
output
integrate((a*sec(d*x + c) + a)^2/(e*tan(d*x + c))^(5/2), x)
 
3.2.16.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2}{{\left (e\,\mathrm {tan}\left (c+d\,x\right )\right )}^{5/2}} \,d x \]

input
int((a + a/cos(c + d*x))^2/(e*tan(c + d*x))^(5/2),x)
 
output
int((a + a/cos(c + d*x))^2/(e*tan(c + d*x))^(5/2), x)